Bibliography

[AA11a]

Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, STOC '11, 333–342. New York, NY, USA, June 2011. Association for Computing Machinery. URL: https://doi.org/10.1145/1993636.1993682 (visited on 2022-03-18), doi:10.1145/1993636.1993682.

[AA11b]

Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, STOC '11, 333–342. New York, NY, USA, June 2011. Association for Computing Machinery. URL: https://doi.org/10.1145/1993636.1993682 (visited on 2022-03-22), doi:10.1145/1993636.1993682.

[AB16]

Scott Aaronson and Daniel J Brod. Bosonsampling with lost photons. Physical Review A, 93(1):012335, 2016.

[AGMFGE21]

Daniel Gómez Aguado, Vicent Gimeno, Julio José Moyano-Fernández, and Juan Carlos Garcia-Escartin. Qoptcraft: a python package for the design and study of linear optical quantum systems. 2021. URL: https://arxiv.org/abs/2108.06186, doi:10.48550/ARXIV.2108.06186.

[Ark15]

Alex Arkhipov. Bosonsampling is robust against small errors in the network matrix. Physical Review A, 92(6):062326, 2015.

[AAB+19]

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, October 2019. Number: 7779 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41586-019-1666-5 (visited on 2022-03-27), doi:10.1038/s41586-019-1666-5.

[BFB+20]

Leonardo Banchi, Mark Fingerhuth, Tomas Babej, Christopher Ing, and Juan Miguel Arrazola. Molecular docking with Gaussian Boson Sampling. Science Advances, 6(23):eaax1950, June 2020. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274809/ (visited on 2022-03-27), doi:10.1126/sciadv.aax1950.

[BBB+21]

Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson, Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mihir Pant, Fernando Pastawski, Terry Rudolph, and Chris Sparrow. Fusion-based quantum computation. arXiv:2101.09310 [quant-ph], January 2021. arXiv: 2101.09310. URL: http://arxiv.org/abs/2101.09310 (visited on 2022-03-27).

[BB14]

Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11, December 2014. URL: https://www.sciencedirect.com/science/article/pii/S0304397514004241 (visited on 2022-03-14), doi:10.1016/j.tcs.2014.05.025.

[BCLK+22]

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022. URL: https://link.aps.org/doi/10.1103/RevModPhys.94.015004, doi:10.1103/RevModPhys.94.015004.

[BW21]

Kamil Bradler and Hugo Wallner. Certain properties and applications of shallow bosonic circuits. arXiv preprint arXiv:2112.09766, December 2021. URL: https://arxiv.org/abs/2112.09766v1 (visited on 2022-03-08), doi:10.48550/arXiv.2112.09766.

[Bro19]

Michael Brooks. Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574(7776):19–21, October 2019. Bandiera_abtest: a Cg_type: News Feature Number: 7776 Publisher: Nature Publishing Group Subject_term: Chemistry, Computer science, Quantum physics, Quantum information. URL: https://www.nature.com/articles/d41586-019-02936-3 (visited on 2022-03-27), doi:10.1038/d41586-019-02936-3.

[BR+91]

Richard A Brualdi, Herbert John Ryser, and others. Combinatorial matrix theory. Volume 39. Springer, 1991.

[BB02]

Jean-Luc Brylinski and Ranee Brylinski. Universal quantum gates. Mathematics of quantum computation, 2002.

[CRO+19]

Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum computing. Chemical Reviews, 119(19):10856–10915, 10 2019. URL: https://doi.org/10.1021/acs.chemrev.8b00803, doi:10.1021/acs.chemrev.8b00803.

[CHM+16a]

William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven Kolthammer, and Ian A Walmsley. Optimal design for universal multiport interferometers. Optica, 3(12):1460–1465, 2016.

[CHM+16b]

William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven Kolthammer, and Ian A Walmsley. Optimal design for universal multiport interferometers. Optica, 3(12):1460–1465, 2016.

[CC20]

Peter Clifford and Raphaël Clifford. Faster classical boson sampling. arXiv preprint arXiv:2005.04214, 2020.

[CC18]

Peter Clifford and Raphaël Clifford. The Classical Complexity of Boson Sampling. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 146–155. Society for Industrial and Applied Mathematics, January 2018. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611975031.10 (visited on 2022-03-18), doi:10.1137/1.9781611975031.10.

[ClementHM+22]

Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. Lov-calculus: a graphical language for linear optical quantum circuits. arXiv preprint arXiv:2204.11787, 2022.

[CF20]

Peter Constantin and Ciprian Foias. Navier-stokes equations. University of Chicago Press, 2020.

[DHM+20]

Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Research, 2:023015, Apr 2020. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.023015, doi:10.1103/PhysRevResearch.2.023015.

[Eke91]

Artur K. Ekert. Quantum cryptography based on Bell's theorem. Physical Review Letters, 67(6):661–663, August 1991. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.67.661 (visited on 2022-03-14), doi:10.1103/PhysRevLett.67.661.

[FGG14]

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph], November 2014. arXiv: 1411.4028. URL: http://arxiv.org/abs/1411.4028 (visited on 2022-03-27).

[FBW18]

Mark Fingerhuth, Tomáš Babej, and Peter Wittek. Open source software in quantum computing. PLOS ONE, 13(12):e0208561, December 2018. Publisher: Public Library of Science. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208561 (visited on 2022-03-27), doi:10.1371/journal.pone.0208561.

[FSK20]

Suren A Fldzhyan, M Yu Saygin, and Sergei P Kulik. Optimal design of error-tolerant reprogrammable multiport interferometers. Optics Letters, 45(9):2632–2635, 2020.

[GLAA21]

Beng Yee Gan, Daniel Leykam, Dimitris G. Angelakis, and Dimitris G. Angelakis. Fock State-enhanced Expressivity of Quantum Machine Learning Models. In Conference on Lasers and Electro-Optics (2021), paper JW1A.73. Optica Publishing Group, May 2021. URL: https://opg.optica.org/abstract.cfm?uri=CLEO_AT-2021-JW1A.73 (visited on 2022-03-18), doi:10.1364/CLEO_AT.2021.JW1A.73.

[Gie15]

Valérian Giesz. Cavity-enhanced Photon-Photon Interactions With Bright Quantum Dot Sources. PhD thesis, Université Paris-Saclay (ComUE), 2015.

[Gly10]

David G Glynn. The permanent of a square matrix. European Journal of Combinatorics, 31(7):1887–1891, 2010.

[GLR+13]

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. Quipper: a scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '13, 333–342. New York, NY, USA, June 2013. Association for Computing Machinery. URL: https://doi.org/10.1145/2491956.2462177 (visited on 2022-03-27), doi:10.1145/2491956.2462177.

[Gro96]

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, STOC '96, 212–219. New York, NY, USA, July 1996. Association for Computing Machinery. URL: https://doi.org/10.1145/237814.237866 (visited on 2022-03-14), doi:10.1145/237814.237866.

[GIQ19]

Brajesh Gupt, Josh Izaac, and Nicolás Quesada. The walrus: a library for the calculation of hafnians, hermite polynomials and gaussian boson sampling. Journal of Open Source Software, 4(44):1705, 2019.

[Had09]

Robert H Hadfield. Single-photon detectors for optical quantum information applications. Nature photonics, 3(12):696–705, 2009.

[HHL09]

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear Systems of Equations. Physical Review Letters, 103(15):150502, October 2009. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.103.150502 (visited on 2022-03-14), doi:10.1103/PhysRevLett.103.150502.

[HMSV22]

Nicolas Heurtel, Shane Mansfield, Jean Senellart, and Benoit Valiron. Strong simulation of linear optical processes. 2022.

[HBEG21]

Paul Hilaire, Edwin Barnes, Sophia E. Economou, and Frédéric Grosshans. Error-correcting entanglement swapping using a practical logical photon encoding. Physical Review A, 104(5):052623, November 2021. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevA.104.052623 (visited on 2022-03-22), doi:10.1103/PhysRevA.104.052623.

[HOM87a]

C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18):2044–2046, November 1987. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.59.2044 (visited on 2022-03-18), doi:10.1103/PhysRevLett.59.2044.

[HOM87b]

C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18):2044–2046, November 1987. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.59.2044 (visited on 2022-03-18), doi:10.1103/PhysRevLett.59.2044.

[HOM87c]

C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18):2044–2046, November 1987. URL: https://link.aps.org/doi/10.1103/PhysRevLett.59.2044 (visited on 2022-03-18), doi:10.1103/PhysRevLett.59.2044.

[HBC+21]

Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean. Quantum advantage in learning from experiments. 2021. URL: https://arxiv.org/abs/2112.00778, doi:10.48550/ARXIV.2112.00778.

[JSK+18]

Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo. Quantum algorithms to simulate many-body physics of correlated fermions. Phys. Rev. Applied, 9:044036, Apr 2018. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.9.044036, doi:10.1103/PhysRevApplied.9.044036.

[KK14]

Gil Kalai and Guy Kindler. Gaussian noise sensitivity and bosonsampling. arXiv preprint arXiv:1409.3093, 2014.

[KRE07]

K. Kieling, T. Rudolph, and J. Eisert. Percolation, Renormalization, and Quantum Computing with Nondeterministic Gates. Physical Review Letters, 99(13):130501, September 2007. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.99.130501 (visited on 2022-03-22), doi:10.1103/PhysRevLett.99.130501.

[Kni02a]

E. Knill. A Note on Linear Optics Gates by Post-Selection. Physical Review A, 66(5):052306, November 2002. arXiv: quant-ph/0110144. URL: http://arxiv.org/abs/quant-ph/0110144 (visited on 2022-03-04), doi:10.1103/PhysRevA.66.052306.

[Kni02b]

E. Knill. Quantum gates using linear optics and postselection. Physical Review A, 66(5):052306, November 2002. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevA.66.052306 (visited on 2022-03-04), doi:10.1103/PhysRevA.66.052306.

[KLM01]

E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409(6816):46–52, January 2001. Number: 6816 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/35051009 (visited on 2022-03-04), doi:10.1038/35051009.

[KL10]

Pieter Kok and Brendon W. Lovett. Introduction to Optical Quantum Information Processing. Cambridge University Press, 2010. doi:10.1017/CBO9781139193658.

[KMN+07]

Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135–174, Jan 2007. URL: https://link.aps.org/doi/10.1103/RevModPhys.79.135, doi:10.1103/RevModPhys.79.135.

[KMSW00]

P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White. Grover's search algorithm: An optical approach. Journal of Modern Optics, 47(2-3):257–266, February 2000. Publisher: Taylor & Francis _eprint: https://www.tandfonline.com/doi/pdf/10.1080/09500340008244040. URL: https://www.tandfonline.com/doi/abs/10.1080/09500340008244040 (visited on 2022-03-18), doi:10.1080/09500340008244040.

[KPE21]

Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving. Solving nonlinear differential equations with differentiable quantum circuits. Physical Review A, 103(5):052416, May 2021. arXiv: 2011.10395. URL: http://arxiv.org/abs/2011.10395 (visited on 2021-12-01), doi:10.1103/PhysRevA.103.052416.

[Lon01]

Gui-Lu Long. Grover algorithm with zero theoretical failure rate. Physical Review A, 64(2):022307, 2001.

[MEAG+20]

Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. Quantum computational chemistry. Rev. Mod. Phys., 92:015003, Mar 2020. URL: https://link.aps.org/doi/10.1103/RevModPhys.92.015003, doi:10.1103/RevModPhys.92.015003.

[MM22a]

Rawad Mezher and Shane Mansfield. Assessing the quality of near-term photonic quantum devices. arXiv:2202.04735 [quant-ph], February 2022. arXiv: 2202.04735. URL: http://arxiv.org/abs/2202.04735 (visited on 2022-03-18).

[MM22b]

Rawad Mezher and Shane Mansfield. Assessing the quality of near-term photonic quantum devices. arXiv preprint arXiv:2202.04735, 2022.

[NM65]

John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal, 7(4):308–313, 1965.

[Nik19]

Georgios M. Nikolopoulos. Cryptographic one-way function based on boson sampling. Quantum Information Processing, 18(8):259, July 2019. URL: https://doi.org/10.1007/s11128-019-2372-9 (visited on 2022-03-27), doi:10.1007/s11128-019-2372-9.

[NB16]

Georgios M. Nikolopoulos and Thomas Brougham. Decision and function problems based on boson sampling. Physical Review A, 94(1):012315, July 2016. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevA.94.012315 (visited on 2022-03-27), doi:10.1103/PhysRevA.94.012315.

[OMalleyBK+16a]

P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016. URL: https://link.aps.org/doi/10.1103/PhysRevX.6.031007, doi:10.1103/PhysRevX.6.031007.

[OMalleyBK+16b]

P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016. URL: https://link.aps.org/doi/10.1103/PhysRevX.6.031007, doi:10.1103/PhysRevX.6.031007.

[ONFJ21]

Changhun Oh, Kyungjoo Noh, Bill Fefferman, and Liang Jiang. Classical simulation of lossy boson sampling using matrix product operators. Physical Review A, 104(2):022407, 2021.

[PMS+14]

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014. Number: 1 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/ncomms5213 (visited on 2022-03-18), doi:10.1038/ncomms5213.

[PMOBrien09]

Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O'Brien. Shor’s Quantum Factoring Algorithm on a Photonic Chip. Science, 325(5945):1221–1221, September 2009. Publisher: American Association for the Advancement of Science. URL: https://www.science.org/doi/abs/10.1126/science.1173731 (visited on 2022-03-18), doi:10.1126/science.1173731.

[Pre11]

John Preskill. Quantum computing and the entanglement frontier. 2011. URL: https://arxiv.org/abs/1203.5813, doi:arXiv:1203.5813.

[Pre18]

John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. Publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. URL: https://quantum-journal.org/papers/q-2018-08-06-79/ (visited on 2022-03-27), doi:10.22331/q-2018-08-06-79.

[PerezSCLGFL20]

Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. Data re-uploading for a universal quantum classifier. Quantum, 4:226, 2020.

[RLBW02]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White. Linear optical controlled-NOT gate in the coincidence basis. Physical Review A, 65(6):062324, June 2002. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevA.65.062324 (visited on 2022-03-04), doi:10.1103/PhysRevA.65.062324.

[RWMM01]

T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn. Simple scheme for efficient linear optics quantum gates. Physical Review A, 65(1):012314, December 2001. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevA.65.012314 (visited on 2022-03-04), doi:10.1103/PhysRevA.65.012314.

[RZBB94a]

Michael Reck, Anton Zeilinger, Herbert J Bernstein, and Philip Bertani. Experimental realization of any discrete unitary operator. Physical review letters, 73(1):58, 1994.

[RZBB94b]

Michael Reck, Anton Zeilinger, Herbert J Bernstein, and Philip Bertani. Experimental realization of any discrete unitary operator. Physical review letters, 73(1):58, 1994.

[RJS22]

Tanay Roy, Liang Jiang, and David I Schuster. Deterministic grover search with a restricted oracle. arXiv preprint arXiv:2201.00091, 2022.

[RCOBrienL17]

Nicholas J Russell, Levon Chakhmakhchyan, Jeremy L O’Brien, and Anthony Laing. Direct dialling of haar random unitary matrices. New journal of physics, 19(3):033007, 2017.

[Rys63]

Herbert John Ryser. Combinatorial mathematics. Volume 14. American Mathematical Soc., 1963.

[SFVuvckovic+02]

Charles Santori, David Fattal, Jelena Vučković, Glenn S Solomon, and Yoshihisa Yamamoto. Indistinguishable photons from a single-photon device. nature, 419(6907):594–597, 2002.

[Schollwock11]

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of physics, 326(1):96–192, 2011.

[SBradlerI+20]

Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt. Measuring the similarity of graphs with a Gaussian Boson sampler. Phys. Rev. A, 101:032314, Mar 2020. URL: https://link.aps.org/doi/10.1103/PhysRevA.101.032314, doi:10.1103/PhysRevA.101.032314.

[SSP15]

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.

[SSM21]

Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A, 103(3):032430, 2021.

[SVP+12]

Peter J Shadbolt, Maria R Verde, Alberto Peruzzo, Alberto Politi, Anthony Laing, Mirko Lobino, Jonathan CF Matthews, Mark G Thompson, and Jeremy L O'Brien. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics, 6(1):45–49, January 2012. URL: https://doi.org/10.1038/nphoton.2011.283, doi:10.1038/nphoton.2011.283.

[Shc16]

VS Shchesnovich. Universality of generalized bunching and efficient assessment of boson sampling. Physical review letters, 116(12):123601, 2016.

[Sho94]

P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, 124–134. November 1994. doi:10.1109/SFCS.1994.365700.

[SLL+05]

Federico Spedalieri, Hwang Lee, Hwang Lee, Jonathan Dowling, and Jonathan Dowling. Linear Optical Quantum Computing with Polarization Encoding. In Frontiers in Optics (2005), paper LMB4, LMB4. Optica Publishing Group, October 2005. URL: https://opg.optica.org/abstract.cfm?uri=LS-2005-LMB4 (visited on 2022-03-28), doi:10.1364/LS.2005.LMB4.

[TMBMolmer14]

Malte C Tichy, Klaus Mayer, Andreas Buchleitner, and Klaus Mølmer. Stringent and efficient assessment of boson-sampling devices. Physical review letters, 113(2):020502, 2014.

[Val79a]

L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, January 1979. URL: https://www.sciencedirect.com/science/article/pii/0304397579900446 (visited on 2022-03-18), doi:10.1016/0304-3975(79)90044-6.

[Val79b]

Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8(2):189–201, 1979.

[VikstaalGronkvistS+20]

Pontus Vikstål, Mattias Grönkvist, Marika Svensson, Martin Andersson, Göran Johansson, and Giulia Ferrini. Applying the quantum approximate optimization algorithm to the tail-assignment problem. Phys. Rev. Applied, 14:034009, Sep 2020. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.14.034009, doi:10.1103/PhysRevApplied.14.034009.

[WKU+16]

Mattia Walschaers, Jack Kuipers, Juan-Diego Urbina, Klaus Mayer, Malte Christopher Tichy, Klaus Richter, and Andreas Buchleitner. Statistical benchmark for bosonsampling. New Journal of Physics, 18(3):032001, 2016.

[WQD+19]

Hui Wang, Jian Qin, Xing Ding, Ming-Cheng Chen, Si Chen, Xiang You, Yu-Ming He, Xiao Jiang, L. You, Z. Wang, C. Schneider, Jelmer J. Renema, Sven Höfling, Chao-Yang Lu, and Jian-Wei Pan. Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a \$1\0\\textasciicircum \14\\$-Dimensional Hilbert Space. Physical Review Letters, 123(25):250503, December 2019. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.123.250503 (visited on 2022-03-18), doi:10.1103/PhysRevLett.123.250503.

[WS14]

Dave Wecker and Krysta M. Svore. LIQUi\textbar \textgreater : A Software Design Architecture and Domain-Specific Language for Quantum Computing. arXiv:1402.4467 [quant-ph], February 2014. arXiv: 1402.4467. URL: http://arxiv.org/abs/1402.4467 (visited on 2022-03-27).

[Wid76]

David Vernon Widder. The heat equation. Volume 67. Academic Press, 1976.

[WBC+21]

Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Physical Review Letters, 127(18):180501, October 2021. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.127.180501 (visited on 2022-03-27), doi:10.1103/PhysRevLett.127.180501.

[YLA21]

Gan Beng Yee, Daniel Leykam, and Dimitris G. Angelakis. Fock State-enhanced Expressivity of Quantum Machine Learning Models. In 2021 Conference on Lasers and Electro-Optics (CLEO), 1–2. May 2021. ISSN: 2160-8989.

[ZDQ+21]

Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao Su, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Jelmer J. Renema, Chao-Yang Lu, and Jian-Wei Pan. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Physical Review Letters, 127(18):180502, October 2021. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/PhysRevLett.127.180502 (visited on 2022-03-27), doi:10.1103/PhysRevLett.127.180502.

[ZWD+20a]

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational advantage using photons. Science, 370(6523):1460–1463, December 2020. Publisher: American Association for the Advancement of Science. URL: https://www.science.org/doi/abs/10.1126/science.abe8770 (visited on 2022-03-27), doi:10.1126/science.abe8770.

[ZWD+20b]

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational advantage using photons. Science, 370(6523):1460–1463, 2020. URL: https://www.science.org/doi/abs/10.1126/science.abe8770, arXiv:https://www.science.org/doi/pdf/10.1126/science.abe8770, doi:10.1126/science.abe8770.

[ZTB+20]

Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. 2020. URL: https://arxiv.org/abs/2005.10258, doi:10.48550/ARXIV.2005.10258.